【追加分数】二元一次不等式组与简单的线性规划问题
1、已知-1≤a-b≤2,2≤a+b≤4,则4a-2b的取值范围是?2、已知函数f(x)=ax^2+bx,若-1≤f(x)≤1,2≤f(1)≤4,求f(2)的取值范围第一...
1、已知-1≤a-b≤2,2≤a+b≤4,则4a-2b的取值范围是?
2、已知函数f(x)=ax^2+bx,若-1≤f(x)≤1,2≤f(1)≤4,求f(2)的取值范围
第一题的解题方法好像是用了一个m(a-b)+n(a+b),联立方程组求出m、n,然后把m、n分别和上述两个不等式相乘,这是为什么?为什么可以这样写?
第二题和第一题好像差不多,麻烦简述一下解题思路,不要过程。还有就是像这种题一般都怎么解?主要用到哪些知识点和思想方法?谢谢! 展开
2、已知函数f(x)=ax^2+bx,若-1≤f(x)≤1,2≤f(1)≤4,求f(2)的取值范围
第一题的解题方法好像是用了一个m(a-b)+n(a+b),联立方程组求出m、n,然后把m、n分别和上述两个不等式相乘,这是为什么?为什么可以这样写?
第二题和第一题好像差不多,麻烦简述一下解题思路,不要过程。还有就是像这种题一般都怎么解?主要用到哪些知识点和思想方法?谢谢! 展开
展开全部
第一题中,我们通常把a+b,a-b成为基函数,4a-2b为目标函数,一定存在m,n使得m(a-b)+n(a+b)=4a-2b ,展开,对比系数即可得m=3,n=1。那么4a-2b =3(a-b)+(a+b),其范围就是(-1,10)
第二题,条件有错,1≤f(x)≤1,这里的f(x)应该是f(k),k为某常数,由-1≤f(k)≤1,2≤f(1)≤4,可以得到两个关于a,b的不等式,以这两个作为基函数,用待定系数法(即上面的方法,设m,n)可求f(2),然后类似上面可解
望采纳~~
第二题,条件有错,1≤f(x)≤1,这里的f(x)应该是f(k),k为某常数,由-1≤f(k)≤1,2≤f(1)≤4,可以得到两个关于a,b的不等式,以这两个作为基函数,用待定系数法(即上面的方法,设m,n)可求f(2),然后类似上面可解
望采纳~~
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询