帮忙写一下过程
2个回答
展开全部
∫(-π/4,π/4)tanxdx
=∫(-π/4,π/4)sinx/cosxdx
=∫(-π/4,π/4)-1/cosxd(cosx)
=-lncosx|(-π/4,π/4)
=-[lncos(π/4)-lncos(-π/4)]
=-[ln(√2/2)-ln(√2/2)]
=0
∫(-π,π)sin^3xdx
=-∫(-π,π)sin^2xd(cosx)
=-∫(-π,π)(1-cos^2x)d(cosx)
=-[cosx-1/3cos^3x]|(-π,π)
=[1/3cos^3x-cosx]|(-π,π)
=(1/3cos^3π-cosπ)-[1/3cos^3(-π)-cos(-π)]
=1/3cos^3π-cosπ-1/3cos^3π+cosπ
=0
=∫(-π/4,π/4)sinx/cosxdx
=∫(-π/4,π/4)-1/cosxd(cosx)
=-lncosx|(-π/4,π/4)
=-[lncos(π/4)-lncos(-π/4)]
=-[ln(√2/2)-ln(√2/2)]
=0
∫(-π,π)sin^3xdx
=-∫(-π,π)sin^2xd(cosx)
=-∫(-π,π)(1-cos^2x)d(cosx)
=-[cosx-1/3cos^3x]|(-π,π)
=[1/3cos^3x-cosx]|(-π,π)
=(1/3cos^3π-cosπ)-[1/3cos^3(-π)-cos(-π)]
=1/3cos^3π-cosπ-1/3cos^3π+cosπ
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询