设a为√(3+√5)-√(3-√5)的整数部分,b为√(6+3√3)-(6-3√3)的小数部分,求
设a为√(3+√5)-√(3-√5)的整数部分,b为√(6+3√3)-(6-3√3)的小数部分,求2/b-1/a...
设a为√(3+√5)-√(3-√5)的整数部分,b为√(6+3√3)-(6-3√3)的小数部分,求2/b-1/a
展开
2个回答
展开全部
√(3+√5)-√(3-√5)
=√[(6+2√5)/2]-√[(6-2√5)/2]
=√[(√5+1)^2/2]-√[(√5-1)^2/2]
=(√5+1)√(1/2)-(√5-1)√(1/2)
=[(√5+1)-(√5-1)]√(1/2)
=2√(1/2)
=√2
a的整数部分为:1
√(6+3√3)-(6-3√3)
=√[(12+6√3)/2]-√[(12-6√3)/2]
=√[(3+√3)^2/2]-√[(3-√3)^2/2]
=(3+√3)√(1/2)-(3-√3)√(1/2)
=[(3+√3)-(3-√3)]√(1/2)
=2√3*√(1/2)
=√6
b的小数部分√6-2
2/b-1/a
=2/(√6-2)-1/1
=2(√6+2)/(√6-2)(√6+2)-1
=2(√6+2)/2-1
=√6+2-1
=√6+1
=√[(6+2√5)/2]-√[(6-2√5)/2]
=√[(√5+1)^2/2]-√[(√5-1)^2/2]
=(√5+1)√(1/2)-(√5-1)√(1/2)
=[(√5+1)-(√5-1)]√(1/2)
=2√(1/2)
=√2
a的整数部分为:1
√(6+3√3)-(6-3√3)
=√[(12+6√3)/2]-√[(12-6√3)/2]
=√[(3+√3)^2/2]-√[(3-√3)^2/2]
=(3+√3)√(1/2)-(3-√3)√(1/2)
=[(3+√3)-(3-√3)]√(1/2)
=2√3*√(1/2)
=√6
b的小数部分√6-2
2/b-1/a
=2/(√6-2)-1/1
=2(√6+2)/(√6-2)(√6+2)-1
=2(√6+2)/2-1
=√6+2-1
=√6+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询