已知an=(2n-1)/2^(n-1),求和sn

 我来答
茹翊神谕者

2021-11-13 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1614万
展开全部

简单计算一下即可,答案如图所示

分析

斋帅府雨梅
2019-01-24 · TA获得超过3782个赞
知道大有可为答主
回答量:3051
采纳率:33%
帮助的人:163万
展开全部
{(2n-1)/2^n}=
2n/2^n
-
1/2^n
对于后一部分
1/2^n
,
其前n项和为等比数列求和
S2
=
1/2
+
1/2^2
+
1/2^3
+
……
1/2^n
=
(1/2)
*
[1
-
(1/2)^n]/(1
-
1/2)
=
1
-
1/2^n
对于前一部分
2n/2^n
S1
=
2*(1/2
+
2/2^2
+
3/2^3
+
……
+
n/2^n)
两端乘2
2S1
=
2
*
[1
+
2/2
+
3/2^2
+
……
+
n/2^(n-1)]
两式相减,
将分母方次相同的项凑在一起
2S1
-
S1
=
S1
=
2*{
1
+
(2/2
-
1/2)+
(3/2^2
-
2/2^2)
+
……
+
[n/2^(n-1)
-
(n-1)/2^(n-1
)
-
n/2^n
}
=
2
*
[1
+
1/2
+
1/2^2
+
1/2^(n-1)
-
n/2^n]
=
2
*
{
1
*
[1
-
(1/2)^n]/(1
-1/2)
-
n/2^n}
=
2
*
[2
-
1/2^(n-1)
-
n/2^n]
=
4
-
4/2^n
-
2n/2^n
S
=
S1
-
S2
=
4
-
4/2^n
-
2n/2^n
-
1
+
1/2^n
=
3
-
(3
+
2n)/2^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式