大学电路分析基础题,求解
2016-04-20 · 知道合伙人教育行家
关注
展开全部
解:(1)根据最大功率传输定理,将R从电路中断开后,剩余电路的戴维南等效参数为Uoc、Req;则当R=Req时,R上可以获得最大功率,最大功率为:Pmax=Uoc²/(4Req)。
R断开后,设上端为节点a、下端为b,三个4Ω电阻的公共节点为m。
采用回路电流法,设上面的回路电流为I1、下面回路为I2,皆为顺时针方向。
回路1:(4+4+4)×I1-4×I2=u1,12I1-4I2=u1;
回路2:(4+4)×I2-4I1=100-20,8I2-4I1=80。
另外补充受控源方程:u1=4I2。
解方程组,得:I1=10(A),I2=15(A),u1=60(V)。
因此:Uoc=Uab=Uam+Umb=4×I1+u1+20=4×10+60+20=120(V)。
再将电压源短路,并从ab端外加电压U0(a+、b-),设从a端流入的电流为I0。
此时左边的两个4Ω电阻并联,电压都为u1,电流都为u1/4,从上向下;则与它们并联后串联的4Ω电阻电流为:u1/4+u1/4=u1/2,从右至左,电压则为:4×u1/2=2u1,右正左负。所以:
U0=2u1+u1=3u1。
则4Ω串联受控源支路的电流为:I0-u1/2,所以:U0=4×(I0-u1/2)+u1=4I0-u1。
整理:U0=4I0-U0/3,4U0=12I0,故:Req=U0/I0=12/4=3(Ω)。
当R=Req=3Ω时,R可以获得最大功率,最大功率为:Pmax=120²/(4×3)=1200(W)。
(2)R=3Ω时,R的电流为:Uoc/(Req+R)=120/(3+3)=20(A)。
电路由3个回路组成,针对上、左、右三个回路,设出三个回路电流分别为:I1、I2、I3,方向均为顺时针。则有回路电压方程:
回路1:(4+4+4)×I1-4I2-4I3=u1,12I1-4I2-4I3=u1;
回路2:(4+4)×I2-4I1-4I3=100-20,-4I1+8I2-4I3=80,-I1+2I2-I3=20;
回路3:(4+3+4)×I3-4I1-4I2=20,-4I1-4I2+11I3=20。
补充方程:4×(I2-I3)=u1。
解方程组:I1=20,I2=30,I3=20——I3就是R的电流,和原来计算的结果一致。u1=40。
100V电压源:电流为I2=30A,方向向上,P1=100×30=3000(W)>0,且电压电流非关联正方向,释放功率3000W;
20V电压源:电流为I2-I3=30-20=10(A),方向向下,P2=10×20=200(W)>0,电压与电流为关联正方向,吸收功率200W,也就是对电路提供的功率为-200W。
(3)受控源:电流为I1=20A,电压为u1=40V,P3=20×40=800(W)>0,且电压与电流为非关联正方向,向电路提供功率800W。
验证功率平衡:
上面的4Ω电阻:电流为I1=20A,消耗功率:P4=I1²×4=20²×4=1600(W);
左边的4Ω电阻:电流为I2-I1=30-20=10A,消耗功率:P5=10²×4=400(W);
右边的4Ω电阻:电流为I1=I3=20-20=0A,消耗功率为零;
下面的4Ω电阻:电压为u1=40V,消耗功率:P6=u1²/4=40²/4=400(W);
电阻R=3Ω:消耗功率由(1)知道:P7=1200W。
释放:P1+P3=3000+800=3800W;消耗(吸收):P2+P4+P5+P6+P7=200+1600+400+400+1200=3800W,功率平衡。
(4)回到戴维南等效电路,电阻R消耗功率1200W;电路等效电流为20A,等效电源电压Uoc=120V,等效电源释放功率:120×20=2400W,所以电路的传输效率为:
η=1200/2400×100%=50%。
R断开后,设上端为节点a、下端为b,三个4Ω电阻的公共节点为m。
采用回路电流法,设上面的回路电流为I1、下面回路为I2,皆为顺时针方向。
回路1:(4+4+4)×I1-4×I2=u1,12I1-4I2=u1;
回路2:(4+4)×I2-4I1=100-20,8I2-4I1=80。
另外补充受控源方程:u1=4I2。
解方程组,得:I1=10(A),I2=15(A),u1=60(V)。
因此:Uoc=Uab=Uam+Umb=4×I1+u1+20=4×10+60+20=120(V)。
再将电压源短路,并从ab端外加电压U0(a+、b-),设从a端流入的电流为I0。
此时左边的两个4Ω电阻并联,电压都为u1,电流都为u1/4,从上向下;则与它们并联后串联的4Ω电阻电流为:u1/4+u1/4=u1/2,从右至左,电压则为:4×u1/2=2u1,右正左负。所以:
U0=2u1+u1=3u1。
则4Ω串联受控源支路的电流为:I0-u1/2,所以:U0=4×(I0-u1/2)+u1=4I0-u1。
整理:U0=4I0-U0/3,4U0=12I0,故:Req=U0/I0=12/4=3(Ω)。
当R=Req=3Ω时,R可以获得最大功率,最大功率为:Pmax=120²/(4×3)=1200(W)。
(2)R=3Ω时,R的电流为:Uoc/(Req+R)=120/(3+3)=20(A)。
电路由3个回路组成,针对上、左、右三个回路,设出三个回路电流分别为:I1、I2、I3,方向均为顺时针。则有回路电压方程:
回路1:(4+4+4)×I1-4I2-4I3=u1,12I1-4I2-4I3=u1;
回路2:(4+4)×I2-4I1-4I3=100-20,-4I1+8I2-4I3=80,-I1+2I2-I3=20;
回路3:(4+3+4)×I3-4I1-4I2=20,-4I1-4I2+11I3=20。
补充方程:4×(I2-I3)=u1。
解方程组:I1=20,I2=30,I3=20——I3就是R的电流,和原来计算的结果一致。u1=40。
100V电压源:电流为I2=30A,方向向上,P1=100×30=3000(W)>0,且电压电流非关联正方向,释放功率3000W;
20V电压源:电流为I2-I3=30-20=10(A),方向向下,P2=10×20=200(W)>0,电压与电流为关联正方向,吸收功率200W,也就是对电路提供的功率为-200W。
(3)受控源:电流为I1=20A,电压为u1=40V,P3=20×40=800(W)>0,且电压与电流为非关联正方向,向电路提供功率800W。
验证功率平衡:
上面的4Ω电阻:电流为I1=20A,消耗功率:P4=I1²×4=20²×4=1600(W);
左边的4Ω电阻:电流为I2-I1=30-20=10A,消耗功率:P5=10²×4=400(W);
右边的4Ω电阻:电流为I1=I3=20-20=0A,消耗功率为零;
下面的4Ω电阻:电压为u1=40V,消耗功率:P6=u1²/4=40²/4=400(W);
电阻R=3Ω:消耗功率由(1)知道:P7=1200W。
释放:P1+P3=3000+800=3800W;消耗(吸收):P2+P4+P5+P6+P7=200+1600+400+400+1200=3800W,功率平衡。
(4)回到戴维南等效电路,电阻R消耗功率1200W;电路等效电流为20A,等效电源电压Uoc=120V,等效电源释放功率:120×20=2400W,所以电路的传输效率为:
η=1200/2400×100%=50%。
华芯测试
2024-09-01 广告
2024-09-01 广告
深圳市华芯测试科技有限公司是一家专业从事半导体晶圆检测设备的企业,公司集制造、研发、销售和服务于一体,不仅拥有专业的生产设备、精湛的加工工艺及品质检测体系,具有经验丰富的设计与研发团队及完善的售后服务团队,并集成相关测试仪器、仪表,提供半导...
点击进入详情页
本回答由华芯测试提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询