已知函数f(x)=1-2a的x次方-a的2x次方(a>1)
①求函数f(x)的值域,②若x∈[-2.1]时,函数f(x)的最小值为-7,求a的值以及函数f(x)的最大值。...
①求函数f(x)的值域,②若x∈[-2.1]时,函数f(x)的最小值为-7,求a的值以及函数f(x)的最大值。
展开
1个回答
展开全部
f(x) = 1 - 2a^x - a^(2x) = 1 - 2a^x - (a^x) ^2 = 1 + 1 - (a^x+1)^2 = 2 - (a^x+1)^2
∵a^x>0
∴(a^x+1)^2>1,即1<(a^x+1)^2<+∞
∴-1>- (a^x+1)^2>-∞
-∞<2 - (a^x+1)^2<1
值域(-∞,1)
∵a>1
∴a^x单调增,(a^x+1)^2单调增,f(x) = 2 - (a^x+1)^2单调减
x∈【-2,1】时,f(x)的最小值为-7,即f(1)=-7
2 - (a^1+1)^2 = -7
(a+1)^2=9
又:a>1,a+1>2
∴a+1=3
∴a=2
x=-2时,取最大值:f(x)max = f(-2) = 2-{2^(-2)+1}^2 = 2 - (5/4)^2 = 7/16
∵a^x>0
∴(a^x+1)^2>1,即1<(a^x+1)^2<+∞
∴-1>- (a^x+1)^2>-∞
-∞<2 - (a^x+1)^2<1
值域(-∞,1)
∵a>1
∴a^x单调增,(a^x+1)^2单调增,f(x) = 2 - (a^x+1)^2单调减
x∈【-2,1】时,f(x)的最小值为-7,即f(1)=-7
2 - (a^1+1)^2 = -7
(a+1)^2=9
又:a>1,a+1>2
∴a+1=3
∴a=2
x=-2时,取最大值:f(x)max = f(-2) = 2-{2^(-2)+1}^2 = 2 - (5/4)^2 = 7/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询