比例的解比例
比例分为比例尺和比例.表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。
在比例里,两个外项的积等于两个内项的积。已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。 解比例都是运用比例的基本性质来解的,因为两外项的积等于两内项的积,所以我们可以把两个外项和内项互相乘起来,再来解这个方程。比如:x:3= 9:27
解法:
x:3=9:27
解:27x=3×9
27x=27
x=1
比例具有如下性质:
若a:b=c:d(b.d≠0),则有
1) ad=bc (即比例的基本性质:两个外项的积等于两个内项的积)
2) b:a=d:c (a.c≠0) (交换比较,结果仍然相等)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
证明过程如下
令 a:b=c:d=k,
∵a:b=c:d
∴a=bk;c=dk
1)∴ad=bk*d=kbd;bc=b*dk=kbd
∴ad=bc
2) 显然b:a=d:c=1/k
3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b
4) ∵a:b=c:d
∴(a/b)+1=(c/d)+1
∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):d
a+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)
且……①
5) ∵b/(a+b)=d/(c+d)
∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)
∴a/(a+b)=c/(c+d)=k/k+1 ……②
即a:(a+b)=c:(c+d)
a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c
6) ②-①,等式两边同时相减得
7) 做做此题:一个长方形,比为5:3,长方形的周长是80米,求它的长和宽。
(有意者,请做在后面。)
假设长方形长为5X,宽为3X,那么:
(5X+3X)*2=80
8X=40
X=5
长:5X=5*5=25(米) 宽:3X=5*3=15(米)
答:这个长方形的长是25米,宽是15米。
或:
两个长:(米)
两个宽:(米)
长:(米)
宽:(米)
答:这个长方形的长是25米,宽是15米。
或:
长:(米)
宽:(米)
答:这个长方形的长是25米,宽是15米。