
已知an =(2n-1) 2^n,求前n项和
1个回答
展开全部
a1=1*2^1
a2=3*2^2
a3=5*2^3
...
an=(2n-1)*2^n
Sn=a1+a2+a3+...+an=1*2^1+3*2^2+5*2^3+...+(2n-1)*2^n
Sn/2=1+3*2^1+5*2^2+...+(2n-1)^2(n-1)
Sn-(Sn/2)=-[1+2*2^1+2*2^2+2*2^3+...2^2(n-1)]+(2n-1)*2^n
=-1-{2*2^1[1-2^(n-1)]/(1-2)}+(2n-1)*2^n
=-1+4-2*2^n+(2n-1)*2^n
Sn/2 =(2n-3)*2^n +3
Sn=(2n-3)*2^(n+1) +6
a2=3*2^2
a3=5*2^3
...
an=(2n-1)*2^n
Sn=a1+a2+a3+...+an=1*2^1+3*2^2+5*2^3+...+(2n-1)*2^n
Sn/2=1+3*2^1+5*2^2+...+(2n-1)^2(n-1)
Sn-(Sn/2)=-[1+2*2^1+2*2^2+2*2^3+...2^2(n-1)]+(2n-1)*2^n
=-1-{2*2^1[1-2^(n-1)]/(1-2)}+(2n-1)*2^n
=-1+4-2*2^n+(2n-1)*2^n
Sn/2 =(2n-3)*2^n +3
Sn=(2n-3)*2^(n+1) +6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询