已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切(1)求f(x)的解析式(2)当且仅当x∈[4,m...
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切
(1)求f(x)的解析式
(2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值 展开
(1)求f(x)的解析式
(2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值 展开
1个回答
展开全部
(1)由对任意x∈R,均有f(x-4)=f(2-x)可知f(x)关于x=3对称,因此f(x)=ax2+bx对称轴x=-b/(2a)=3,有b=-6a
由函数f(x)的图像与y=x相切得ax2+bx=x有两相等实根,即化为x[ax+(b-1)]=0,x=-(b-1)/a=0,则b=1
所以a=-1/6,b=1,则f(x)=-1/6*x2+x
(2)f(x-t)≤x恒成立,则化为1/6*(x-t)^2+t>=0在x∈[4,m](m>4)时恒成立,令F(x)=1/6*(x-t)^2+t,分为以下三类:
(i)t<=4时,F(x)min=F(4)>=0恒成立,求出t的范围
(ii)t>=m时,F(x)min=F(m)>=0恒成立,求出t和m的范围
(iii)4<t<m时,F(x)min=F(t)>=0恒成立,求出t和m的范围
由函数f(x)的图像与y=x相切得ax2+bx=x有两相等实根,即化为x[ax+(b-1)]=0,x=-(b-1)/a=0,则b=1
所以a=-1/6,b=1,则f(x)=-1/6*x2+x
(2)f(x-t)≤x恒成立,则化为1/6*(x-t)^2+t>=0在x∈[4,m](m>4)时恒成立,令F(x)=1/6*(x-t)^2+t,分为以下三类:
(i)t<=4时,F(x)min=F(4)>=0恒成立,求出t的范围
(ii)t>=m时,F(x)min=F(m)>=0恒成立,求出t和m的范围
(iii)4<t<m时,F(x)min=F(t)>=0恒成立,求出t和m的范围
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询