韦达定理的关系我们都知道,同理求出一元三次方程?写出步骤谢谢! 5
2个回答
展开全部
因为x1,x2,x3是一元三次方程ax^3+bx^2+cx+d=0的三个根
所以ax^3+bx^2+cx+d=a(x-x1)(x-x2)(x-x3)
=a[x^2-(x1+x2)x+x1x2](x-x3)
=a[x^3-x3*x^2-(x1+x2)*x^2+x3(x1+x2)*x+x1x2*x-x1x2x3]
=ax^3-a(x1+x2+x3)*x^2+a(x1x2+x2x3+x3x1)*x-ax1x2x3
所以b=-a(x1+x2+x3),c=a(x1x2+x2x3+x3x1),d=-ax1x2x3
即x1+x2+x3=-b/a,x1x2+x2x3+x3x1=c/a,x1x2x3=-d/a
所以ax^3+bx^2+cx+d=a(x-x1)(x-x2)(x-x3)
=a[x^2-(x1+x2)x+x1x2](x-x3)
=a[x^3-x3*x^2-(x1+x2)*x^2+x3(x1+x2)*x+x1x2*x-x1x2x3]
=ax^3-a(x1+x2+x3)*x^2+a(x1x2+x2x3+x3x1)*x-ax1x2x3
所以b=-a(x1+x2+x3),c=a(x1x2+x2x3+x3x1),d=-ax1x2x3
即x1+x2+x3=-b/a,x1x2+x2x3+x3x1=c/a,x1x2x3=-d/a
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询