
xdx/√x^2+1的不定积分;dx/√x+√x的三次方的不定积分
1个回答
展开全部
(1)
∫xdx/√(x²+1)
=½∫d(x²+1)/√(x²+1)
=√(x²+1) +C
(2)
令⁶√x=t,则x=t⁶,√x=t³,³√x=t²
∫dx/(√x+³√x)
=∫[1/(t³+t²)]d(t⁶)
=6∫[t⁵/(t³+t²)]dt
=6∫[t³/(t+1)]dt
=6∫[(t³+1-1)/(t+1)]dt
=6∫[t²-t+1 -1/(t+1)]dt
=∫[6t²-6t+6 -6/(t+1)]dt
=2t³-3t²+6t -6ln|t+1| +C
=2√x-3³√x+6⁶√x -6ln|⁶√x +1| +C
∫xdx/√(x²+1)
=½∫d(x²+1)/√(x²+1)
=√(x²+1) +C
(2)
令⁶√x=t,则x=t⁶,√x=t³,³√x=t²
∫dx/(√x+³√x)
=∫[1/(t³+t²)]d(t⁶)
=6∫[t⁵/(t³+t²)]dt
=6∫[t³/(t+1)]dt
=6∫[(t³+1-1)/(t+1)]dt
=6∫[t²-t+1 -1/(t+1)]dt
=∫[6t²-6t+6 -6/(t+1)]dt
=2t³-3t²+6t -6ln|t+1| +C
=2√x-3³√x+6⁶√x -6ln|⁶√x +1| +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询