微分方程的特解怎么求

 我来答
安贞星
推荐于2019-11-04 · TA获得超过1.2万个赞
知道答主
回答量:61
采纳率:0%
帮助的人:1.7万
展开全部

二次非齐次微分方程的一般解法

一般式是这样的ay''+by'+cy=f(x)

第一步:求特征根

令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)

2、若r1=r2,则y=(C1+C2x)*e^(r1*x)

3、若r1,2=α±βi,则帆野y=e^(αx)*(C1cosβx+C2sinβx)

第三步:特解

f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)

则y*=x^k*Q(x)*e^(λx) (注:Q(x)是猜轿郑和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)

1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)

2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx

1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)

2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)

第四步:解特解系数

把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。

最后结果就是y=通解+特解。

通解的系数C1,C2是任意常数。

拓展资料:

微分方程

微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。

高数常用微分表

唯一性

存在定一微 分程及穗颂约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。

鲨鱼星小游戏
高粉答主

2021-06-24 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238399

向TA提问 私信TA
展开全部

微分方程的特解求法如下:

f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)

则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)

1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)

2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)郑竖侍

3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式喊吵是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx

1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)

2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值纤宴问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
holyyours
高粉答主

推荐于2019-08-28 · 说的都是干货,快来关注
知道小有建树答主
回答量:83
采纳率:100%
帮助的人:3万
展开全部

微分方程的特解步骤如下:

  1. 一个二阶常系数非齐次线性微分方程,首先判断出是什么类型的。

  2. 然后写出与所给方程对应的齐次方程。

  3. 接着写出它的特征方程。由于这里λ=0不是特征方程的根,所以可以设出特解。

  4. 把特解代入所给方程,比较两端x同次幂的系数。

    举例如下:

    扩展资料:

    微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。

    微分方程是伴随着微积分学一起发展起来的。微积分中御敬学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广拆滑泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人卖慎口统计等领域都有应用。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
分之道网校加盟
2021-07-13 · 分之道网校,让学习更快乐,让人生得高分
分之道网校加盟
分之道全程全科记忆网校以小初高全日制教材为蓝本,配套九大学科,并根据知识点与重难点,自主研发记忆课程,让学生共享教育资源,随时随地助力学生得高分。
向TA提问
展开全部
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是渣枝特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结祥厅果就是y=通解+特解。
通解的系数C1,C2是任意常数。
拓展资料:

微分方程

微分方程指描述未知函数的导数与自变量之间的关系的方谨梁隐程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。

高数常用微分表

唯一性

存在定一微 分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大魔王轰轰轰
2019-08-22
知道答主
回答量:2
采纳率:0%
帮助的人:1451
展开全部
二次非齐次微分方程的一般解法

一般式是这样的ay''+by'+cy=f(x)

第一步:求特征根

令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)

2、若r1=r2,则y=(C1+C2x)*e^(r1*x)

3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)

第三步:特解

f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)扰陆

则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多缓凳顷项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)

1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)

2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx

1、若α+βi不是特征根,y*=Q(x)(Acosβx+Bsinβx)

2、若α+βi是特征根粗咐,y*=x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)

第四步:解特解系数

把特解的y*'',y*',y*都解出来代回原方程,对照系数解出待定系数。

最后结果就是y=通解+特解。

通解的系数C1,C2是任意常数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式