展开全部
解:
令x=sint,则t=arcsinx
x:-1→1,则t:-π/2→π/2
∫[-1:1][(x+x²)/√(1-x²)]dx
=∫[-1:1][x/√(1-x²)]dx +∫[-1:1][x²/√(1-x²)]dx
=0+2∫[0:π/2][sin²t/√(1-sin²t)]d(sint)
=2∫[0:π/2](sin²t·cost/cost)dt
=∫[0:π/2](1-cos2t)dt
=(t-½sin2t)|[0:π/2]
=(π/2 -½sinπ)-(0-½sin0)
=π/2-0 -0+0
=π/2
令x=sint,则t=arcsinx
x:-1→1,则t:-π/2→π/2
∫[-1:1][(x+x²)/√(1-x²)]dx
=∫[-1:1][x/√(1-x²)]dx +∫[-1:1][x²/√(1-x²)]dx
=0+2∫[0:π/2][sin²t/√(1-sin²t)]d(sint)
=2∫[0:π/2](sin²t·cost/cost)dt
=∫[0:π/2](1-cos2t)dt
=(t-½sin2t)|[0:π/2]
=(π/2 -½sinπ)-(0-½sin0)
=π/2-0 -0+0
=π/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询