若a>0,b>0,且a²+b²/2=1,求a√﹙1+b²﹚的最大值
1个回答
展开全部
解:
因为a>0,b>0
所以a√(1+b²)=√2•(√a²(1/2+b²/2)
)
因为a²+(1/2+b²/2)=a²+b²/2+1/2=1+1/2=3/2
所以a√(1+b²)≤(√2•
(1/2•3/2))
=(3√2
)/4
当且仅当a²=1/2+b²/2
取等号
即a=
3/2
,b=±√2/2
所以a√(1+b²)
的最大值为(3√2
)/4
因为a>0,b>0
所以a√(1+b²)=√2•(√a²(1/2+b²/2)
)
因为a²+(1/2+b²/2)=a²+b²/2+1/2=1+1/2=3/2
所以a√(1+b²)≤(√2•
(1/2•3/2))
=(3√2
)/4
当且仅当a²=1/2+b²/2
取等号
即a=
3/2
,b=±√2/2
所以a√(1+b²)
的最大值为(3√2
)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询