高数中的数列收敛充要条件是什么?关于发散与收敛的问题。急求,谢谢
1)数列收敛的基本定义
设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数 N=N(ε),使得当 n>N 时,有 |Xn -A| < ε ,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。
2)夹挤定理
如果有三个数列 {Pn} {Xn} {Qn}。且当n足够大以后,满足条件 Pn≤Xn≤Qn。如果 当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。
3) 单调有界原理
任何单调(单调递增或递减)且有界的数列都收敛。
扩展资料
收敛数列的性质:
有界性
定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。
定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
保号性
如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
相互关系
收敛数列与其子数列间的关系
子数列也是收敛数列且极限为a恒有|Xn|<M
若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。
参考资料百度百科——收敛数列
1)数列收敛的基本定义
设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数 N=N(ε),使得当 n>N 时,有 |Xn -A| < ε ,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。
2)夹挤定理
如果有三个数列 {Pn} {Xn} {Qn}。且当n足够大以后,满足条件 Pn≤Xn≤Qn。如果 当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。
3) 单调有界原理
任何单调(单调递增或递减)且有界的数列都收敛。
===============
的确,从逻辑上讲,充要条件也是充分条件。原来对楼主的题目意图理解有误,以为是专门指充分而不必要的条件。现做补充
4)柯西收敛准则
设有一数列{Xn},该数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当 m>n>N 时就有 |Xn-Xm|<ε
参考资料: http://zhidao.baidu.com/question/39409590.html?fr=ala0
或:这个数列的任一子列都收敛到同一个数。
广告 您可能关注的内容 |