请分别求这两个定积分
1个回答
展开全部
1、原式=∫(0,π)sin^2x*sinxdx
=∫(0,π)(cos^2x-1)d(cosx)
=[(1/3)*cos^3x-cosx]|(0,π)
=-1/3+1-1/3+1
=4/3
2、令tant=cosx,则d(cosx)=sec^2tdt
原式=∫(π/4,-π/4)sec^3tdt
=∫(π/4,-π/4)sectd(tant)
=secttant|(π/4,-π/4)-∫(π/4,-π/4)tan^2tsectdt
=-2√2-∫(π/4,-π/4)(sec^2t-1)sectdt
=-2√2-∫(π/4,-π/4)sec^3tdt+∫(π/4,-π/4)sectdt
=-2√2-∫(π/4,-π/4)sec^3tdt+ln|sect+tant||(π/4,-π/4)
=-2√2+2ln(√2-1)-∫(π/4,-π/4)sec^3tdt
所以∫(π/4,-π/4)sec^3tdt=ln(√2-1)-√2
即原式=ln(√2-1)-√2
=∫(0,π)(cos^2x-1)d(cosx)
=[(1/3)*cos^3x-cosx]|(0,π)
=-1/3+1-1/3+1
=4/3
2、令tant=cosx,则d(cosx)=sec^2tdt
原式=∫(π/4,-π/4)sec^3tdt
=∫(π/4,-π/4)sectd(tant)
=secttant|(π/4,-π/4)-∫(π/4,-π/4)tan^2tsectdt
=-2√2-∫(π/4,-π/4)(sec^2t-1)sectdt
=-2√2-∫(π/4,-π/4)sec^3tdt+∫(π/4,-π/4)sectdt
=-2√2-∫(π/4,-π/4)sec^3tdt+ln|sect+tant||(π/4,-π/4)
=-2√2+2ln(√2-1)-∫(π/4,-π/4)sec^3tdt
所以∫(π/4,-π/4)sec^3tdt=ln(√2-1)-√2
即原式=ln(√2-1)-√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询