怎样快捷的求出一个数的所有因数的个数,这个数是个
1个回答
展开全部
你去看看这个数能被几整除就行了。 整除规则第一条(1):任何数都能被1整除。 整除规则第二条(2):个位上是2、4、6、8、0的数都能被2整除。 整除规则第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。 整除规则第四条(4):最后两位能被4整除的数,这个数就能被4整除。 整除规则第五条(5):个位上是0或5的数都能被5整除。 整除规则第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。 整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。 整除规则第八条(8):最后三位能被8整除的数,这个数就能被8整除。 整除规则第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。 整除规则第十条(10): 若一个整数的末位是0,则这个数能被10整除 整除规则第十一条(11):若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! 整除规则第十二条(12):若一个整数能被3和4整除,则这个数能被12整除。 整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 整除规则第十四条(14):a 若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。 整除规则第十五条(15):a 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 整除规则第十六条(16):若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除 整除规则第十七条(17):若一个整数的末四位与前面5倍的隔出数的差能被2)整除,则这个数能被29整除
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |