三阶行列式计算

a-2-3-2-1a-8-2214a+3... a-2 -3 -2
-1 a-8 -2
2 14 a+3
展开
 我来答
花降如雪秋风锤
高粉答主

2019-11-16 · 甘于平凡,却不甘于平凡地溃败。
花降如雪秋风锤
采纳数:276 获赞数:83251

向TA提问 私信TA
展开全部

三阶行列式的计算方法如下:

三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。

1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH

2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF

3、行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF)

扩展资料:

三阶行列式性质

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

轮看殊O
高粉答主

2018-09-18 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:716万
展开全部

三阶行列式计算方法,如图所示:

为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。

标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

扩展资料

性质1 行列式与它的转置行列式相等。

性质2 互换行列式的两行(列),行列式变号。

推论 如果行列式有两行(列)完全相同,则此行列式为零。

性质3 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

参考资料:百度百科-三阶行列式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安贞星
2018-05-31 · TA获得超过1.2万个赞
知道答主
回答量:61
采纳率:0%
帮助的人:1.7万
展开全部

具体的计算方法如上图所示

拓展资料:

行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

行列式的基本性质

1、性质1:行列互换,行列式的值不变。

2、性质2:交换行列式的两行(列),行列式的值变号。

3、推论:若行列式中有两行(列)的对应元素相同,则此行列式的值为零。

4、性质3:若行列式的某一行(列)各元素都有公因子k,则k可提到行列式外。

5、推论1:数k乘行列式,等于用数k乘该行列式的某一行(列)。

6、推论2:若行列式有两行(列)元素对应成比例,则该行列式的值为零。

7、性质4:若行列式中某行(列)的每一个元素均为两数之和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行(列)的元素,其余各行(列)与原行列式相同。

8、性质5:将行列式某行(列)的k倍加到另一行(列)上,行列式的值不变。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2018-07-21
展开全部
具体的计算方法如上图所示拓展资料: 行列式 行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。 行列式的基本性质 1、性质1:行列互换,行列式的值不变。 2、性质2:交换行列式的两行(列),行列式的值变号。 3、推论:若行列式中有两行(列)的对应元素相同,则此行列式的值为零。 4、性质3:若行列式的某一行(列)各元素都有公因子k,则k可提到行列式外。 5、推论1:数k乘行列式,等于用数k乘该行列式的某一行(列)。 6、推论2:若行列式有两行(列)元素对应成比例,则该行列式的值为零。 7、性质4:若行列式中某行(列)的每一个元素均为两数之和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行(列)的元素,其余各行(列)与原行列式相同。 8、性质5:将行列式某行(列)的k倍加到另一行(列)上,行列式的值不变。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
12zzzzzzz
2018-07-21
知道答主
回答量:88
采纳率:0%
帮助的人:12.1万
展开全部
这个计算很容易,你可以先按行列式的性质,通过行列变化,令一行或一列只有一个元素不会零,然后按行或列展开。
或者直接死算,这个有个套路,就是直接按第一行展开,不管是什么,反正二阶行列式很容易计算,就是要注意中间是负号。
当然,前提是你学了行列式按某一行或列展开
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式