数列极限存在的充要条件为什么是这个

 我来答
bill8341
高粉答主

2017-12-28 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3578万
展开全部
在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。下面我们将以定理的形式来叙述它,这个定理称为“柯西收敛原理”。
编辑本段定理叙述:
数列有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立
将柯西收敛原理推广到函数极限中则有:
函数f(x)在无穷远处有极限的充要条件是:对任意给定的ε>0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|<ε成立
此外柯西收敛原理还可推广到广义积分是否收敛,数项级数是否收敛的判别中,有较大的适用范围。
茹翊神谕者

2022-02-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1538万
展开全部

简单分析一下即可,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式