已知函数f(x)=2sinx·cos²(φ/2)+cosx·sinφ-sinx,(0<φ<π),在x=π处取最小值.

 我来答
高初许湛蓝
2020-05-15 · TA获得超过3694个赞
知道小有建树答主
回答量:3182
采纳率:30%
帮助的人:452万
展开全部
解:1)f(x)
=
2sinxcos
2
(φ/2)
+
cosxsinφ

sinx
=
sinx[2cos
2
(φ/2)
-
1]
+
cosxsinφ
=
sinxcosφ
+
cosxsinφ
=
sin(x
+
φ)
,当x
+
φ
=
-π/2
+
2kπ时(k∈Z)取最小值,把x
=
π代入上式可得φ
=
-3π/2
+
2kπ,而且0<φ<π,所以当且仅当k
=
1时,
φ
=
π/2


2)f(A)
=
sin(A
+
π/2)
=
cosA
=
√3/2
=>
A
=
arccos(√3/2)
=
π/6
,由正弦定理可得
a/sinA
=
b/sinB
=>
sinB
=
√2sin(π/6)/1
=
√2/2
=>
B
=
π/4
或者3π/4
=>
C
=
π

A

B
=

/12
或者
π
/12

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式