计算∫ln(1+根号(1+x/x))dx,求大神解答
∫ln{1+√[(x+1)/x]} dx=∫ln(1+u)d[1/(u²-1)]=[ln(1+u)]/(u²-1)-∫[1/(u²-1)]*[1/(1+u)]du
=[ln(1+u)]/(u²-1)-(1/4)∫{[1/(u-1)]+[1/(1+u)]+[2/(1+u)²]}du
=[ln(1+u)]/(u²-1)-(1/4){ln(u-1)+ln(1+u)-[2/(1+u)]}
=[ln(1+u)]/(u²-1)-(1/4){ln(u²-1)-[2/(1+u)]}
=x*ln{1+√[(x+1)/x]} + (1/4)lnx + 2/{1+√[(x+1)/x]};
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
则x=1/(t^2-1)
dx=-2t/[(t^2-1)^2]
原式=∫-2t[ln(1+t)]/[(t^2-1)^2]dt
=∫ln(1+t)d[1/(t^2-1)]
=[ln(1+t)]/(t^2-1)-∫1/[(t-1)(1+t)^2]dt
=[ln(1+t)]/(t^2-1)-∫(-1/4)(1/1+t)+(-1/2)[1/(t+1)^2]+(1/4)[1/(t-1)]dt
=[ln(1+t)]/(t^2-1)+∫(1/4)(1/1+t)dt+(1/2)∫[1/(t+1)^2]dt-(1/4)∫[1/(t-1)]dt
=[ln(1+t)]/(t^2-1)+(1/4)ln(1+t)-(1/4)ln(t-1)-(1/2)[1/(1+t)]+c
=[ln(1+t)]/(t^2-1)+(1/4)ln[(1+t)/(t-1)]-(1/2)[1/(1+t)]+c
将√[(1+x)/x]=t代入,即可!