高数,如图。请利用泰勒公式求它的极限,麻烦过程详细一点,谢谢!
展开全部
arctanx~x
e^x=1+x+x^2/2+…… ~ 1+x+x^2/2
ln(1+x)=x-x^2/2+x^3/3-…… ~x-x^2/2
原极限=lim [(1+x+x^2/2)x-x(1+x)]/x[x-(x-x^2/2)]
=lim [(x^3/2)]/[x^3/2)]=1
e^x=1+x+x^2/2+…… ~ 1+x+x^2/2
ln(1+x)=x-x^2/2+x^3/3-…… ~x-x^2/2
原极限=lim [(1+x+x^2/2)x-x(1+x)]/x[x-(x-x^2/2)]
=lim [(x^3/2)]/[x^3/2)]=1
更多追问追答
追问
答案是三分之一...(._.`)
追答
答案肯定错了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
Excel函数公式大全中的计数功能主要涵盖了几种常用的函数。其中,`COUNT`函数用于统计指定范围内非空单元格的数量;`COUNTIF`函数则能基于特定条件进行计数,如统计特定部门或满足某个数值条件的单元格数;而`COUNTIFS`函数更...
点击进入详情页
本回答由TableDI提供
展开全部
∫[0:1](siny-ysiny)dy
=∫[0:1]sinydy+∫[0:1]yd(cosy)
=-cosy|[0:1]+y·cosy|[0:1]-∫[0:1]cosydy
=-(cos1-cos0)+(1·cos1-0·cos0)-siny|[0:1]
=-(cos1-1)+(cos1-0)-(sin1-sin0)
=-cos1+1+cos1-0-sin1+0
=1-sin1
=∫[0:1]sinydy+∫[0:1]yd(cosy)
=-cosy|[0:1]+y·cosy|[0:1]-∫[0:1]cosydy
=-(cos1-cos0)+(1·cos1-0·cos0)-siny|[0:1]
=-(cos1-1)+(cos1-0)-(sin1-sin0)
=-cos1+1+cos1-0-sin1+0
=1-sin1
追问
答案是三分之一...(;_;)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询