
函数连续且严格单调递增能说明函数可导吗?
2个回答
展开全部
不能。
例如 分段函数
f(x) = x, x≥0;
f(x) = 2x, x<0.
左极限是 lim<x→0->2x = 0, 右极限是 lim<x→0+>x = 0,
函数值 f(0) = 0, 故函数 在 x = 0 连续。
左导数是 lim<x→0->(2x-0)/x = 2, 函数单调增加;
右导数是 lim<x→0+>(x-0)/x = 1, 函数单调增加;
故函数 在 x = 0 不可导。
函数连续并严格单调递增加, 在 x = 0 处不可导。
例如 分段函数
f(x) = x, x≥0;
f(x) = 2x, x<0.
左极限是 lim<x→0->2x = 0, 右极限是 lim<x→0+>x = 0,
函数值 f(0) = 0, 故函数 在 x = 0 连续。
左导数是 lim<x→0->(2x-0)/x = 2, 函数单调增加;
右导数是 lim<x→0+>(x-0)/x = 1, 函数单调增加;
故函数 在 x = 0 不可导。
函数连续并严格单调递增加, 在 x = 0 处不可导。

2025-05-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |