高数 多元函数微分学及其应用
1个回答
2018-04-09
展开全部
z=e^(xlny)
dz=e^(xlny)*(lnydx+xdy/y)
z'|x=e^(xlny)*lny
z'|y=e^(xlny)*(x/y)
则:
z''|x^2=e^(xlny)*(lny)*(lny)=(lny)^2*y^x;
z''|y^2=e^(xlny)*(x/y)*(*x/y)+e^(xlny)*(-x/y^2)
=e^(xlny)*(x/y^2)*(x-1)
=x*(x-1)*y^(x-2)
z''|xy=e^(xlny)*(x/y)*lny+e^(xlny)*(1/y)
=e^(xlny)*(1/y)*(xlny+1)
=y^(x-1)*(xlny+1)
dz=e^(xlny)*(lnydx+xdy/y)
z'|x=e^(xlny)*lny
z'|y=e^(xlny)*(x/y)
则:
z''|x^2=e^(xlny)*(lny)*(lny)=(lny)^2*y^x;
z''|y^2=e^(xlny)*(x/y)*(*x/y)+e^(xlny)*(-x/y^2)
=e^(xlny)*(x/y^2)*(x-1)
=x*(x-1)*y^(x-2)
z''|xy=e^(xlny)*(x/y)*lny+e^(xlny)*(1/y)
=e^(xlny)*(1/y)*(xlny+1)
=y^(x-1)*(xlny+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询