高数极限求解 50
2个回答
展开全部
5. 极限不存在。选 C。
6. 极限不确定。选 A。
例 f(x) = 1/x, g(x) = x-sinx, lim<x→0>f(x)g(x) = 0,
另例 f(x) = 1/x^3, g(x) = x-sinx, lim<x→0>f(x)g(x) = 1/6,
判断题:
x = -1 的左极限 lim<x→-1->[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→-1->(x+1)e^[1/(x-1)] = 0 · 0 = 0;
x = -1 的右极限 lim<x→-1+>[(x^2-1)/(x-1)]e^[1/(x-1)]
lim<x→-1+>(x+1)e^[1/(x-1)] = 0 · e^(-1/2) = 0.
选 (1)
而 x = 1 的左极限 lim<x→1->[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→1->(x+1)e^[1/(x-1)] = 0;
x = 1 的右极限 lim<x→1+>[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→1+>(x+1)e^[1/(x-1)] = +∞,
则 lim<x→1+>y 不存在。
6. 极限不确定。选 A。
例 f(x) = 1/x, g(x) = x-sinx, lim<x→0>f(x)g(x) = 0,
另例 f(x) = 1/x^3, g(x) = x-sinx, lim<x→0>f(x)g(x) = 1/6,
判断题:
x = -1 的左极限 lim<x→-1->[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→-1->(x+1)e^[1/(x-1)] = 0 · 0 = 0;
x = -1 的右极限 lim<x→-1+>[(x^2-1)/(x-1)]e^[1/(x-1)]
lim<x→-1+>(x+1)e^[1/(x-1)] = 0 · e^(-1/2) = 0.
选 (1)
而 x = 1 的左极限 lim<x→1->[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→1->(x+1)e^[1/(x-1)] = 0;
x = 1 的右极限 lim<x→1+>[(x^2-1)/(x-1)]e^[1/(x-1)]
= lim<x→1+>(x+1)e^[1/(x-1)] = +∞,
则 lim<x→1+>y 不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询