展开全部
∵正切函数y=tanx在(-,)上单调递增,
∴其反函数y=arctanx在R上也单调递增,
不妨设,a≥b,原不等式可化为:arctana-arctanb≤a-b,
因此,原不等式等价为:arctana-a≤arctanb-b,-----①
要证不等式①成立,只需构造函数,f(x)=arctanx-x,x∈R,
f‘(x)=-1=-≤0恒成立,
所以,f(x)在R上单调递减,
由于a≥b,所以f(a)≤f(b),
即arctana-a≤arctanb-b,
所以,|arctana-arctanb|≤|a-b|.
∴其反函数y=arctanx在R上也单调递增,
不妨设,a≥b,原不等式可化为:arctana-arctanb≤a-b,
因此,原不等式等价为:arctana-a≤arctanb-b,-----①
要证不等式①成立,只需构造函数,f(x)=arctanx-x,x∈R,
f‘(x)=-1=-≤0恒成立,
所以,f(x)在R上单调递减,
由于a≥b,所以f(a)≤f(b),
即arctana-a≤arctanb-b,
所以,|arctana-arctanb|≤|a-b|.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询