二进制,八进制,十进制,十六进制之间怎么转换
1.什么是二进制
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
.信息的存储单位
位(Bit) :度量数据的最小单位
字节(Byte):最常用的基本单位,一个字节有8位
b7 b6 b5 b4 b3 b2 b1 b0
1 0 0 1 0 1 0 1 =27+24+22+20=149
K字节 1k=1024 byte
M(兆)字节 1M=1024K
G(吉)字节 1G=1024M
T(太)字节 1T=1024G
2.十进制转换
1234[10进制] 0 1 2 3 4 5 6 7 8 9 0 当数位上的值超过9就要进1
1000+200+30+4=1*103+2*102+3*101+4*100=1234
1011[2进制] 0 1 当数位上的值超过1就要进1
1*23+0*22+1*21+1*20=8+0+2+1=11
1011[8进制]0 1 2 3 4 5 6 7 当数位上的值超过7就要进1
1*83+1*81+1*80=512+8+1=521
1011[16进制]0 1 2 3 4 5 6 7 8 9 A B C D E F 当数位上的值超过15就要进1
1*163+1*161+1*160=4096+16+1=4113
3.二进制转换
首先来看十进制到二进制:除2取余数 最后把余数倒过来 100101
比如:十进制数37
所以转换成的二进制数字为:100101
再来八进制到二进制:一个八进制的位拆分成一个三位的二进制数
比如:[八进制]616
6拆分成 110
1拆分成 001
6拆分成 110
所以转换成的二进制数字为:110001110
再来十六进制到二进制:一个八进制的位拆分成一个四位的二进制数
比如:[十六进制]616
6拆分成 0110
1拆分成 0001
6拆分成 0110
所以转换成的二进制数字为:11000010110
4.八进制转换
十进制到八进制:除8取余数 最后把余数倒过来
同时我们也可以先将十进制转换成二进制,然后将二进制又转换成八进制
比如:2456 转化成八进制数字:4630
2456/8=307,余0;
307/8=38,余3;
38/8=4,余6;
4/8=0,余4。
将所有余数倒序相连,得到结果:4630。
因此十进制的2456转换为八进制结果为4630。
二进制到八进制转换 7=4+2+1 111 八进制最大的数字是7转换成二进制刚好是111,占3个位
每三个二进制数为一组,转成一个八进制数位,如果二进制高位不足3位时,用零填补。
比如:10011011
010 011 011
2 3 3
因此二进制的10011011转换为八进制结果为233。
5. 十六进制到八进制
我们可以先把十六进制的数字转换成二进制,在从二进制转换成八进制例如:
3BC24
分别对应到二进制就是:
3 0011
B 1011
C 1100
4 0100
连起来就是:
0011 1011 1100 0100
再按照每三个一组分组:
0 011 101 111 000 100
0__3__5__7__0__4
所以8进制就是35704
6.十六进制转换
十进制到十六进制:除16倒着取余数
同时我们也可以先将十进制转换成二进制,然后将二进制又转换成十六进制
比如说:1610转换成十六进制
直接转16进制:
1610/16=100……10(A);
100 /16= 6……4;
6 /16= 0……6;
故:1610(10)=64A(16).
二进制到十六进制 15=8+4+2+1 1111 十六进制最大数字是F,即15转换成二进制1111,刚好占4个位
每四个二进制数为一组,转成一个十六进制数位,如果二进制高位不足3位时,用零填补。
比如:1110011011
0011 1001 1011
3 9 B
因此二进制的 1110011011转换为十六进制39B
八进制到十六进制
我们可以先把八进制的数字转换成二进制,在从二进制转换成十六进制
八进制的:1234567
转换为二进制是每个数字转换为三位二进制:001 010 011 100 101 110 111
然后把这些数字从右边开始进行按四位分组:0 0101 0011 1001 0111 0111
然后从右边每四位组依次对应一个16进制数:053977
7.各种进制的用途
说了这么多,这些进制都有些什么用了,大家一起讨论下吧!!!
10进制,当然是便于我们人类来使用,我们从小的习惯就是使用十进制,这个毋庸置疑。
2进制,是供计算机使用的,1,0代表开和关,有和无,机器只认识2进制。
16进制,内存地址空间是用16进制的数据表示, 如0x8049324。
编程中,我们常用的还是10进制。
比如:int a = 100,b = 99;
不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决 问题。但二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是:
0000 0000 0000 0000 0110 0100
面对这么长的数进行思考或操作,没有人会喜欢。因此,用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。
1.用于计算机领域的一种重要的数制
2.对计算机理论的描述,计算机硬件电路的设计都是很有益的。比如逻辑电路设计中,既要考虑功能的完备,还要考虑用尽可能少的硬件,十六进制就能起到一些理论分析的作用。比如四位二进制电路,最多就是十六种状态,也就是一种十六进制形式,只有这十六种状态都被用上了或者尽可能多的被用上,硬件资源才发挥了尽可能大的作用。
3.十六进制更简短,因为换算的时候一位16进制数可以顶4位2进制数。
8进制,一般有什么用,查了下资料,还真不知道?有知道的大神告诉我吧。
如果你用过linux你可能见过这样表示一个文件的权限:0777、0666等等
可能有的这样解释:具有读权限加1,具有写权限加2,具有执行权限加4,最后的和就是一个角色所具有的权限。而linux有三种角色:属主、属组、其他用户,所以用0777、0666之类的表示。
如果用二进制来看的话,linux用3个bit来表示权限,如果具有某个权限就把那位置1.比如只具有读权限就是100,只具有写权限就是010,具有读写权限就是110,具有读写执行权限就是111。
1.先是十进制转二进制,把十进制数依次除以2直到为0,得出余数,然后得到余数从下往上排列即可。举个例子:100装二进制为1100100,过程如下
100/2=50 余0,50/2=25 余0,25/2=12余1.....1/2=0余1,结果倒过来就是二进制数。
十进制转八进制,十六进制也能类似的用这种方法转换,只是除数换为8,16而已
2.二进制转十进制
比如前面的1100100,从右往左数,0*2的0次方+0*2的1次方+1*2的2次方+...+1*2的6次方=100(十进制),相应的八进制,十六进制也是这么转换的,只是把2换成8或16.
3.二进制转八进制或十六进制
8进制数是二进制3个为一组的十进制表示,16进制是二进制数的4个为一组的十进制表示。比如前面的1100100,8进制是(001)(100)(100)=144,16进制是(0110)(0100)=64
望采纳!谢谢
二进制
八进制
十六进制之间可以直接转换,相应方法:二进制从右往左每三位转换为一个八进制数就可以了.二进制从右往左每四位转换为一个十六进制数就可以了.十进制用辗转除二法,换成二进制,十进制用辗转除八法,换成八进制,十进制用辗转除十六法,换成十六进制.
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
十进制转换:
1234[10进制] 0 1 2 3 4 5 6 7 8 9 0 当数位上的值超过9就要进1
1000+200+30+4=1*103+2*102+3*101+4*100=1234。
21011[2进制] 0 1 当数位上的值超过1就要进1
1*23+0*22+1*21+1*20=8+0+2+1=11。
1011[8进制]0 1 2 3 4 5 6 7 当数位上的值超过7就要进1
1*83+1*81+1*80=512+8+1=521。
1011[16进制]0 1 2 3 4 5 6 7 8 9 A B C D E F 当数位上的值超过15就要进1
1*163+1*161+1*160=4096+16+1=4113。
二进制转换:
1、十进制到二进制:除2取余数 最后把余数倒过来 100101
比如:十进制数37
所以转换成的二进制数字为:100101
2、八进制到二进制:一个八进制的位拆分成一个三位的二进制数
比如:[八进制]616
6拆分成 110
1拆分成 001
6拆分成 110
所以转换成的二进制数字为:110001110
3、十六进制到二进制:一个八进制的位拆分成一个四位的二进制数
比如:[十六进制]616
6拆分成 0110
1拆分成 0001
6拆分成 0110
所以转换成的二进制数字为:11000010110
八进制转换:
1、十进制到八进制:除8取余数 最后把余数倒过来
同时我们也可以先将十进制转换成二进制,然后将二进制又转换成八进制
比如:2456 转化成八进制数字:4630
2456/8=307,余0;
307/8=38,余3;
38/8=4,余6;
4/8=0,余4。
将所有余数倒序相连,得到结果:4630。
因此十进制的2456转换为八进制结果为4630。
2、二进制到八进制转换 7=4+2+1 111 八进制最大的数字是7转换成二进制刚好是111,占3个位
每三个二进制数为一组,转成一个八进制数位,如果二进制高位不足3位时,用零填补。
比如:10011011
010 011 011
2 3 3
因此二进制的10011011转换为八进制结果为233。
十六进制转换:
1、十进制到十六进制:除16倒着取余数
同时我们也可以先将十进制转换成二进制,然后将二进制又转换成十六进制
比如说:1610转换成十六进制
直接转16进制:
1610/16=100??10(A);
100 /16= 6??4;
6 /16= 0??6;
故:1610(10)=64A(16).
2、二进制到十六进制 15=8+4+2+1 1111 十六进制最大数字是F,即15转换成二进制1111,刚好占4个位
每四个二进制数为一组,转成一个十六进制数位,如果二进制高位不足3位时,用零填补。
比如:1110011011
0011 1001 1011
3 9 B
因此二进制的 1110011011转换为十六进制39B
拓展资料:
2进制,是供计算机使用的,1,0代表开和关,有和无,机器只认识2进制。
10进制,当然是便于我们人类来使用,我们从小的习惯就是使用十进制,这个毋庸置疑。
16进制,内存地址空间是用16进制的数据表示, 如0x8049324。
编程中,我们常用的还是10进制。
比如:int a = 100,b = 99;
不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决 问题。但二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是:
0000 0000 0000 0000 0110 0100
面对这么长的数进行思考或操作,没有人会喜欢。因此,用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。