设f(x)是周期为2Π的周期函数,它在【-Π,Π)上的表达式为f(x)=x则f(x)的傅里叶级数在x=3处收敛于?

设f(x)是周期为2Π的周期函数,它在【-Π,Π)上的表达式为f(x)=x则f(x)的傅里叶级数在x=3处收敛于?x=Π处收敛于?求详细解答过程... 设f(x)是周期为2Π的周期函数,它在【-Π,Π)上的表达式为f(x)=x则f(x)的傅里叶级数在x=3处收敛于?x=Π处收敛于?
求详细解答过程
展开
 我来答
Dilraba学长
高粉答主

2020-07-19 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411060

向TA提问 私信TA
展开全部

这个函数符合狄里克雷收敛定理f(x)是周期为2π的周期函数

(1)在一个周期内连续或只有第一类间断点,

(2)在一个周期内至多只有有限个极值点

所以x是f(x)的连续点时,级数收敛于x,x是f(x)的间断点时,级数收敛于1/2[f(x+)+f(x-)],这题就是3。

扩展资料

周期函数的性质共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

sHou觉
2019-06-11
知道答主
回答量:1
采纳率:100%
帮助的人:1.2万
展开全部
这个函数符合狄里克雷收敛定理f(x)是周期为2π的周期函数(1)在一个周期内连续或只有第一类间断点,(2)在一个周期内至多只有有限个极值点。
所以x是f(x)的连续点时,级数收敛于x,x是f(x)的间断点时,级数收敛于1/2[f(x+)+f(x-)],这题就是3
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-07-19 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

这个函数符合狄里克雷收敛定理f(x)是周期为2π的周期函数

(1)在一个周期内zhi连续或只有第一类间断点,

(2)在一个周期内至多只有有限个极值点。所以x是f(x)的连续点时,级数收敛于x,x是f(x)的间断点时,级数收敛于1/2[f(x+)+f(x-)],这题就是3。

根据周期函数以及一致收敛的定义,在x=3处收敛于f(3)=3:

周期函数在x=π处间断f(π)=1/2(f(π)+f(-π))=0

扩展资料:

设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

参考资料来源:百度百科-周期函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
火长一灬东8200
2019-06-09 · TA获得超过1864个赞
知道小有建树答主
回答量:2737
采纳率:0%
帮助的人:234万
展开全部
解:分享一种解法。根据傅里叶级数的定义,f(x)=(a0)/2+∑[(an)cos(nx)+(bn)sin(nx)],其中,n=1,2,…,∞。而,a0=(1/π)∫(-π,π)f(x)dx=(1/π)∫(-π,π)(3x2+1)dx=2(π2+1)。 an=(1/π)∫(-π,π)f(x)cos(nx)dx=(1/π)∫(-π,π)(3x2+1)cos(nx)dx=12(-1)^n/n2。 bn=(1/π)∫(-π,π)f(x)sin(nx)dx。∵f(x)sin(nx)在积分区间是奇函数,其值为0,∴bn=0。 ∴f(x)=π2+1+12∑[(-1)^n/n2]cos(nx),其中,n=1,2,…,∞。供参考。
追问
这只是定义 那怎么求收敛于什么值?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式