展开全部
1.先看级数通项是不是趋于0。如果不是,直接写“发散”,OK得分,做下一题;如果是,转到2.
2.看是什么级数,交错级数转到3;正项级数转到4.
3.交错级数用莱布尼兹审敛法,通项递减趋于零就是收敛。
4.正项级数用比值审敛法,比较审敛法等,一般能搞定。搞不定转5.
5.看看这个级数是不是哪个积分定义式,或许能写成积分的形式来判断,如果积分出来是有限值就收敛,反之发散。如果还搞不定转6。
6.在卷子上写“通项是趋于0的,因此可以进一步讨论”。写上这句话,多少有点分。回去烧香保佑及格,OVER!
2.看是什么级数,交错级数转到3;正项级数转到4.
3.交错级数用莱布尼兹审敛法,通项递减趋于零就是收敛。
4.正项级数用比值审敛法,比较审敛法等,一般能搞定。搞不定转5.
5.看看这个级数是不是哪个积分定义式,或许能写成积分的形式来判断,如果积分出来是有限值就收敛,反之发散。如果还搞不定转6。
6.在卷子上写“通项是趋于0的,因此可以进一步讨论”。写上这句话,多少有点分。回去烧香保佑及格,OVER!
展开全部
设un=ln[n/(n²+1)],vn=ln(1/n)。
∴lim(n→∞)un/vn=lim(n→∞){ln[n/(n²+1)]}/ln(1/n)=1。∴级数∑un与∑vn有相同的敛散性。
而,∑vn=-∑lnn→-∞,发散。∴级数∑ln[n/(n²+1)]发散。
供参考。
∴lim(n→∞)un/vn=lim(n→∞){ln[n/(n²+1)]}/ln(1/n)=1。∴级数∑un与∑vn有相同的敛散性。
而,∑vn=-∑lnn→-∞,发散。∴级数∑ln[n/(n²+1)]发散。
供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询