磁场强度在历史上最先由磁荷观点引出。类比于电荷的库仑定律,人们认为存在正负两种磁荷,并提出磁荷的库仑定律。单位正点磁荷在磁场中所受的力被称为磁场强度H。后来安培提出分子电流假说,认为并不存在磁荷,磁现象的本质是分子电流。自此磁场的强度多用磁感应强度B表示。但是在磁介质的磁化问题中,磁场强度H作为一个导出的辅助量仍然发挥着重要作用。
磁场强度描写磁场性质的物理量。用H表示。其定义式为H=B/μ0-M,式中B是磁感应强度,M是磁化强度,μ0是真空中的磁导率,μ0=4π×10-7韦伯/(米·安)。H的单位是安/米。在高斯单位制中H的单位是奥斯特。1安/米=4π×10-3奥斯特。[1]
历史上磁场强度H是从磁荷观点定义的。磁荷观点是从研究永磁铁相互作用问题中总结出来的。当时还不知道磁性与电流的关系,由于条形磁铁有N、S两极,且同性磁极相斥,异性磁极相吸,这一点与正、负电荷之间的相互作用很相似,于是把永磁体与带电体相比较,假设磁极是由磁荷分布形成的。N极上的磁荷叫正磁荷,S极上的磁荷叫负磁荷。同性磁荷相斥,异性磁荷相吸。当磁极本身的线度比正、负磁极间的距离小很多时,磁极上的磁荷称为点磁荷。[1]
库仑通过实验得到两个点磁荷之间相互作用力的规律,称为磁库仑定律,表示为Fm=κqm1qm2/γ2r,式中κ是比例系数,与式中各量的单位选取有关,qm1、qm2表示每个点磁荷的数值,γ是两个点磁荷之间的距离,γ是两者连线上的单位矢。按照磁荷观点,仿照电场强度的定义规定磁场强度H是这样一个矢量:其大小等于单位点磁荷在磁场中某点所受的力,其方向为正磁荷在该点所受磁场力的方向。表为H=Fm/qm0,式中qm0是试探点磁极的磁荷,Fm为qm0在磁场中所受的磁力。显然,与点电荷的电场强度公式E=1/4πεθq/γ2r相对应,点磁荷的磁场强度公式为H=κqm/γ2r。从磁荷观点把H称为磁场强度是合理的,它与E相对应。从分子电流观点,磁场是电流(运动电荷)产生的,并给电流(运动电荷)以作用力。从电流元、运动电荷等在磁场中受力的角度反映磁场的性质定义B(B=F最大/I2dl2,B=F最大/qv⊥)。显然,此时B是与电场强度E对应的。B本应叫磁场强度,由于磁场强度一词历史上已被H占用了,所以将B叫磁感应强度。磁荷观点在历史上完全是在与电荷类比中提出的,实验上并没有找到单独存在的磁荷。1931年狄拉克从量子力学观点提出磁单极的存在,当前仍未找到它,但也没有否定它的存在,尚属于研究课题。分子电流观点和磁荷观点二者微观模型不同,但宏观结果完全一样。不管磁荷是否存在,在讨论永磁问题中采用磁荷观点往往比较简便,至今仍有应用价值。
在顺磁质和抗磁质中式B=μH成立。由式可知B与H成正比且方向一致。在H具有一定对称性的情况下,可用有介质存在时的安培环路定理求得H,再用上式求得B。这种方法也可用来近似计算软铁磁材料中的H、B。在硬磁材料中一般H、B、M方向均不同,它们之间的关系只能用式H=B/μ0-M表示。
定义
磁荷意义下,磁场强度的定义为:
与电场强度类似。
在介质中,磁场强度则通常被定
义为:[2]
式中
为磁化强度。
在国际单位制(SI)中,磁场强度的单位为安[培]/米(
),量纲为
;在高斯单位制(CGS)中,磁场强度单位是奥[斯特](
)。1安/米相当于
奥。[2]
简易定义:把磁场中某点磁感应强度B与介质磁导率μ的比值叫作该点的磁场强度。
磁场强度由磁感应强度与磁导率定义而来,起辅助作用,重要的是理解后两者。
介质中的磁场强度
在恒定磁场中磁场强度的闭合环路积分仅与环路所链环的传导电流
有关而不含束缚分子电流,即[3]
在真空中,磁场强度
当有磁介质时,
在其内部
而
,故式中
为磁化率;
为磁化强度,
。
麦克斯韦方程组
在时变电磁场中,磁场强度的闭合环路积分与环路所链环的全电流有关,但仍不包括束缚分子电流,即
全电流由传导电流
与位移电流
组成。此式的微分形式为[2]
式中
为传导电流密度;
为电位移矢量
的时间变化率,即位移电流密度,其面积积分为
。
磁路中磁场强度的计算公式
磁场强度的计算公式:
其中H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位为A;Le为测试样品的有效磁路长度,单位为m。
希望我能帮助你解疑释惑。
2024-10-28 广告