初中九年级二次函数知识点总结
展开全部
1、二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
2、二次函数y=ax2的图象和性质
(1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有二次函数的图象都是抛物线.
二次函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0).
①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置最低的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;
②当a<0时,抛物线y=ax2的开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置最高的点.也就是说,当a<0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而减小;当x=0时,函数y=ax2取最大值,最大值y=0;
③当|a|越大时,抛物线的开口越小,当|a|越小时,抛物线的开口越大.
(2)二次函数y=ax2的表达式的确定
因为二次函数y=ax2中只含有一个需待定的系数a,所以只需给出x与y的一对对应值即可求出a的值.
3、二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
2、二次函数y=ax2的图象和性质
(1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有二次函数的图象都是抛物线.
二次函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0).
①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置最低的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;
②当a<0时,抛物线y=ax2的开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置最高的点.也就是说,当a<0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而减小;当x=0时,函数y=ax2取最大值,最大值y=0;
③当|a|越大时,抛物线的开口越小,当|a|越小时,抛物线的开口越大.
(2)二次函数y=ax2的表达式的确定
因为二次函数y=ax2中只含有一个需待定的系数a,所以只需给出x与y的一对对应值即可求出a的值.
3、二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询