如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC的延长线于点F,,且垂足为E,则下列结论正确的有
1个回答
展开全部
考点:角平分线的性质;垂线;三角形内角和定理;全等三角形的判定与性质;等腰三角形的判定与性质.专题:证明题.分析:根据∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,证△BCF≌△ACD,根据全等三角形的性质即可判断①②;假如AC+CD=AB,求出∠F+∠FBC≠90°,和已知矛盾,即可判断③④,证根据全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判断⑤.解答:解:∵∠ACB=90°,BF⊥AE,
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①正确;②错误;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
假如AC+CD=AB,
∴AB=AF,∴∠F=∠FBA=65°,
∴∠FBC=65°-45°=20°,
∴∠F+∠FBC≠90°,∴③错误;④错误;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正确;
故答案为:①③⑤.点评:本题主要考查对三角形的内角和定理,全等三角形的性质和判定,角平分线的定义,垂线,等腰三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行证明是证此题的关键.
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①正确;②错误;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
假如AC+CD=AB,
∴AB=AF,∴∠F=∠FBA=65°,
∴∠FBC=65°-45°=20°,
∴∠F+∠FBC≠90°,∴③错误;④错误;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正确;
故答案为:①③⑤.点评:本题主要考查对三角形的内角和定理,全等三角形的性质和判定,角平分线的定义,垂线,等腰三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行证明是证此题的关键.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询