高中数列的求和方法

1,完全归纳法(即数学归纳法)2累乘法3错位相减法4倒序求和法5裂项相消法是什么怎么用什么时候用有规律么具体举例麻烦说一下怎么看出来的谢谢... 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法 是什么 怎么用 什么时候用 有规律么 具体举例 麻烦说一下怎么看出来的 谢谢 展开
 我来答
窦慧清凡灵
2020-06-07 · TA获得超过1218个赞
知道小有建树答主
回答量:2031
采纳率:100%
帮助的人:9.8万
展开全部
1.
公式法:
等差数列求和公式:
sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
sn=na1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)
(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式
{
an
}、{
bn
}分别是等差数列和等比数列.
sn=a1b1+a2b2+a3b3+...+anbn
例如:
an=a1+(n-1)d
bn=a1·q^(n-1)
cn=anbn
tn=a1b1+a2b2+a3b3+a4b4....+anbn
qtn=
a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
tn-qtn=
a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)
tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
sn
=a1+
a2+
a3+......
+an
sn
=an+
a(n-1)+a(n-3)......
+a1
上下相加
得到2sn

sn=
(a1+an)n/2
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n!
[例]
求数列an=1/n(n+1)
的前n项和.
解:an=1/n(n+1)=1/n-1/(n+1)
(裂项)
则sn
=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)=
1-1/(n+1)=
n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:
余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
n(n+1)(n+2)(n+3)
=
[n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4
+
2×3×4×5
=
2×3×4×5×(1/5
+1)
=
2×3×4×5×6/5
假设命题在n=k时成立,于是:
1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
(k+1)(k+2)(k+3)(k+4)
=
1×2×3×4
+
2×3×4*5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
+
(k+1)(k+2)(k+3)(k+4)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
+
(k+1)(k+2)(k+3)(k+4)
=
(k+1)(k+2)(k+3)(k+4)*(k/5
+1)
=
[(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。
如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n
(并项)
求出奇数项和偶数项的和,再相减。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式