函数y=sinx+cosx的最大值是A.B.2C.D.1

试题难度:困难试题类型:单选题试题内容:函数y=sinx+cosx的最大值是A.B.2C.D.1... 试题难度:困难 试题类型:单选题 试题内容:函数y=sinx+cosx的最大值是 A. B.2 C. D.1 展开
 我来答
释捷源昱
2020-06-12 · TA获得超过3890个赞
知道大有可为答主
回答量:3093
采纳率:30%
帮助的人:176万
展开全部
试题答案:A
试题解析:分析:利用两角和的正弦公式把函数y=sinx+cosx
化为
sin(x+
)≤
,从而得到结论.
解答:∵函数y=sinx+cosx=
sin(x+
)≤

故函数y=sinx+cosx的最大值是

故选A.
点评:本题考查两角和的正弦公式,正弦函数的定义域和值域,属于基础题.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式