单调有界数列必有极限?

 我来答
水清霞明

2020-12-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.7万
采纳率:68%
帮助的人:1301万
展开全部
“单调有界数列必有极限”是微积分学的基本定理之一.数列的极限比较简单,都是指当n→∞(实际上是n→+∞)时的极限,所以我们只要说求某某数列的极限(不必说n是怎么变化的),大家都明白的.
函数的极限就比较复杂,如果只说求某某函数的极限,别人是不明白的,还必须要指明自变量(例如x)是如何变化的.
考虑自变量的变化趋势,有x→x0(x0是某个实数,这有多少种?)与x→∞;细分的话,还有x从左边趋向于x0、从右边趋向于x0、趋向于正无穷大、趋向于负无穷大.
还不要忘记,我们研究函数的极限是有前提条件的:
研究x→x0时的极限,要求函数在x0某个去心邻域内有定义;研究x→∞时的极限,要求存在正数X,当|x|>X时函数有定义.
只有在满足前提条件下,才可以谈这个函数此时的极限存在与不存在.
你只给出函数单调有界,既不知道函数的定义域是怎样的,又不知道自变量如何变化,这样情形下谈函数的极限根本就没有丝毫的意义.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式