设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33,...
设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33,(1)写出数列{an}的通项公式;(2)求数列bn=2an+n,求数列{bn}的前n项和T...
设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33, (1)写出数列{an}的通项公式; (2) 求数列bn=2an+n,求数列{bn}的前n项和Tn; (3) 求证:1S1+1S2+1S3+…+1Sn<34
展开
展开全部
解答:解:(1)∵s7=
(a1+a7)
2
×7=7a4=63
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
8(4n-1)
3
+
n(n+1)
2
(3)由等差数列的前n项和公式可得,Sn=3n+
n(n-1)
2
×2=n2+2n=n(n+2)
∴
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
∴
1
S1
+
1
S2
+…+
1
Sn
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
1+n
-
1
n+2
)=
3
4
-
2n+3
2(n+1)(n+2)
<
3
4
(a1+a7)
2
×7=7a4=63
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
8(4n-1)
3
+
n(n+1)
2
(3)由等差数列的前n项和公式可得,Sn=3n+
n(n-1)
2
×2=n2+2n=n(n+2)
∴
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
∴
1
S1
+
1
S2
+…+
1
Sn
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
1+n
-
1
n+2
)=
3
4
-
2n+3
2(n+1)(n+2)
<
3
4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询