1个回答
展开全部
这题难了,一般和差化积貌似不行的:
已知(或容易求):
cos(π/13)+cos(3π/13)+...+cos(11π/13)=1/2
cos(2π/13)+cos(4π/13)+...+cos(12π/13)=-1/2
令:m=cos(π/13)+cos(3π/13)+cos(9π/13)
n=cos(5π/13)+cos(7π/13)+cos(11π/13)
则:m+n=1/2
经过复杂但不难理解的推导可得:
m*n=(3/2)(cos(2π/13)+cos(4π/13)+...+cos(12π/13))=-3/4
解方程组:m+n=1/2和m*n=-3/4
得:m=(1+√13)/4
还有一个解:m=(1-√13)/4要舍去
已知(或容易求):
cos(π/13)+cos(3π/13)+...+cos(11π/13)=1/2
cos(2π/13)+cos(4π/13)+...+cos(12π/13)=-1/2
令:m=cos(π/13)+cos(3π/13)+cos(9π/13)
n=cos(5π/13)+cos(7π/13)+cos(11π/13)
则:m+n=1/2
经过复杂但不难理解的推导可得:
m*n=(3/2)(cos(2π/13)+cos(4π/13)+...+cos(12π/13))=-3/4
解方程组:m+n=1/2和m*n=-3/4
得:m=(1+√13)/4
还有一个解:m=(1-√13)/4要舍去
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询