高数变上限积分求导问题!
题目是这样的:曲线y=∫sin(x-t)dt(下限为0,上限为x)在点x=π/2处的切线方程为____.解答过程如下:令x-t=u,则dt=-du,当t=0时,u=x,当...
题目是这样的:曲线y=∫sin(x-t)dt(下限为0,上限为x)在点x=π/2处的切线方程为____. 解答过程如下:令x-t=u,则dt=-du,当t=0时,u=x,当t=x时,u=0。 所以y=∫sin(x-t)dt(下限为0,上限为x)=∫sinudu(下限为0,上限为x),所以y的导数为si... 题目是这样的:曲线y=∫sin(x-t)dt(下限为0,上限为x)在点x=π/2处的切线方程为____. 解答过程如下:令x-t=u,则dt=-du,当t=0时,u=x,当t=x时,u=0。 所以y=∫sin(x-t)dt(下限为0,上限为x)=∫sinudu(下限为0,上限为x),所以y的导数为sinx,……(后面的都懂)。 在这里x明明为变量,为什么定积分换元法(令x-t=u,则dt=-du,当t=0时,u=x,当t=x时,u=0)还成立?难道可以先把x看做常数?原理是什么?
展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询