
一道线性代数问题求助 10
设A、B都是n阶矩阵,A+B可逆,证明:(1)如果AB=BA,则B(A+B)^-1A=A(A+B)^-1B(2)如果A、B都可逆,则B(A+B)^-1A=A(A+B)^-...
设A、B都是n阶矩阵,A+B可逆,证明:
(1)如果AB=BA,则B(A+B)^-1A=A(A+B)^-1B
(2)如果A、B都可逆,则B(A+B)^-1A=A(A+B)^-1B
(3)等式B(A+B)^-1A=A(A+B)^-1B总成立
给点思路也行啊,不用安全给出详细步骤,谢谢
QQ237533929 展开
(1)如果AB=BA,则B(A+B)^-1A=A(A+B)^-1B
(2)如果A、B都可逆,则B(A+B)^-1A=A(A+B)^-1B
(3)等式B(A+B)^-1A=A(A+B)^-1B总成立
给点思路也行啊,不用安全给出详细步骤,谢谢
QQ237533929 展开
展开全部
第一问
等式左边右乘(A+B)
B(A+B)'A(A+B)=B(A+B)'(AA+AB)=B(A+B)'(AA+BA)=B(A+B)'(A+B)A=BA
等式右边右乘(A+B)
得到AB
证明完毕
第二问利用(AB)'=B'A'=A'B'这个关系式
等式左边变为[A'(A+B)B']'=[(E+A'B)B']'=[B'+A']'
等式右边变为[B'(A+B)A']'=[(B'A+E)A']'=[B'+A']'
证明完毕
第三问我不太清楚,但是我知道第三问的充分必要条件是,矩阵A和B为对称矩阵
等式左边右乘(A+B)
B(A+B)'A(A+B)=B(A+B)'(AA+AB)=B(A+B)'(AA+BA)=B(A+B)'(A+B)A=BA
等式右边右乘(A+B)
得到AB
证明完毕
第二问利用(AB)'=B'A'=A'B'这个关系式
等式左边变为[A'(A+B)B']'=[(E+A'B)B']'=[B'+A']'
等式右边变为[B'(A+B)A']'=[(B'A+E)A']'=[B'+A']'
证明完毕
第三问我不太清楚,但是我知道第三问的充分必要条件是,矩阵A和B为对称矩阵

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
B (A+B)^{-1} A
= [(A+B)-A] (A+B)^{-1} [(A+B)-B]
= [I-A(A+B)^{-1}] [(A+B)-B]
= A (A+B)^{-1} B
= [(A+B)-A] (A+B)^{-1} [(A+B)-B]
= [I-A(A+B)^{-1}] [(A+B)-B]
= A (A+B)^{-1} B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以到秦皇岛昌黎两山乡草粮屯村,找一个叫杜X刚的人渣,他也许会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询