展开全部
用三角函数的积化和差公式:2sinxsiny = cos(x-y)-cos(x+y)
原积分 = ∫2/[cos(a-b) - cos(2x+a+b)] dx
= ∫2/[cos(a-b)+1 - 2cos^2(x+.5(a+b)] dx
= ∫2/[2cos^2(.5(a-b)) - 2cos^2(x+.5(a+b)] dx
= ∫1/[sec^2(x+.5(a+b))(cos^2(.5(a-b)) - 1] dtan(x+.5(a+b))
= ∫1/[tanx^2u A^2 - B^2)] dtanu, where u = x+.5(a+b), A = cos(.5(a-b)), B = sin(.5(a-b))
= ∫(1/(2B))[1/(Atanu-B) - 1/(Atanu+B)] dtanu
= (1/(2AB))ln|(Atanu-B)/(Atanu+B)| + c
原积分 = ∫2/[cos(a-b) - cos(2x+a+b)] dx
= ∫2/[cos(a-b)+1 - 2cos^2(x+.5(a+b)] dx
= ∫2/[2cos^2(.5(a-b)) - 2cos^2(x+.5(a+b)] dx
= ∫1/[sec^2(x+.5(a+b))(cos^2(.5(a-b)) - 1] dtan(x+.5(a+b))
= ∫1/[tanx^2u A^2 - B^2)] dtanu, where u = x+.5(a+b), A = cos(.5(a-b)), B = sin(.5(a-b))
= ∫(1/(2B))[1/(Atanu-B) - 1/(Atanu+B)] dtanu
= (1/(2AB))ln|(Atanu-B)/(Atanu+B)| + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询