设Sn为数列{an}的前n项和,且Sn=3/2(an-1),(n∈N),求数列an的通项公式 bn=4n+3 求an与bn的公共项cn

RT... RT 展开
skyqjdx
2010-09-14 · TA获得超过231个赞
知道答主
回答量:64
采纳率:0%
帮助的人:85.7万
展开全部
解:
a[n]=S[n]-S[n-1]=3/2(a[n]-a[n-1]),得a[n]=3a[n-1]
∴a[n]是等比数列,又a1=S1=3/2(a1-1),解得a1=3
∴a[n]=3^n

考虑a[2n+1]=3^(2n+1)=3*9^n=3*(1+8)^n
用二项式公式展开(1+8)^n(n≥1),除第一项1外,后面各项均能被8整除
故可设(1+8)^n=4k+1 (k=(9^n-1)/4)
∴a[2n+1]=3*(4k+1)=4(3k)+3=b[3k]
∴c[n]=a[2n+1]=3^(2n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式