数是如何产生的?

 我来答
吉鲲雷长文
2020-08-01 · TA获得超过1213个赞
知道小有建树答主
回答量:1965
采纳率:93%
帮助的人:11.5万
展开全部
古埃及人约于公元前17世纪已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。
关于有理数系的严格理论,可用如下方法建立。在Z×(Z-{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设p1,p2Z,q1,q2Z-{0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z-{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。
提分一百
2020-10-06 · TA获得超过1.5万个赞
知道大有可为答主
回答量:3.9万
采纳率:80%
帮助的人:2115万
展开全部

你知道数是如何产生的吗

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式