求(xe^x)/(1+x)^2的不定积分

 我来答
茹翊神谕者

2021-07-30 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1615万
展开全部

简单计算一下即可,答案如图所示

安昌谭慕
2020-01-12 · TA获得超过1151个赞
知道小有建树答主
回答量:1835
采纳率:95%
帮助的人:9.3万
展开全部
∵原式=∫(1+x-1)e^xdx/(1+x)²
=∫e^xdx/(1+x)-∫e^xdx/(1+x)²
又∫e^xdx/(1+x)²
=-e^x/(1+x)+∫e^xdx/(1+x) (应用分部积分法)
∴原式=∫e^xdx/(1+x)-[-e^x/(1+x)+∫e^xdx/(1+x)]
=∫e^xdx/(1+x)+e^x/(1+x)-∫e^xdx/(1+x)
=e^x/(1+x).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式