求(xe^x)/(1+x)^2的不定积分
2个回答
展开全部
∵原式=∫(1+x-1)e^xdx/(1+x)²
=∫e^xdx/(1+x)-∫e^xdx/(1+x)²
又∫e^xdx/(1+x)²
=-e^x/(1+x)+∫e^xdx/(1+x) (应用分部积分法)
∴原式=∫e^xdx/(1+x)-[-e^x/(1+x)+∫e^xdx/(1+x)]
=∫e^xdx/(1+x)+e^x/(1+x)-∫e^xdx/(1+x)
=e^x/(1+x).
=∫e^xdx/(1+x)-∫e^xdx/(1+x)²
又∫e^xdx/(1+x)²
=-e^x/(1+x)+∫e^xdx/(1+x) (应用分部积分法)
∴原式=∫e^xdx/(1+x)-[-e^x/(1+x)+∫e^xdx/(1+x)]
=∫e^xdx/(1+x)+e^x/(1+x)-∫e^xdx/(1+x)
=e^x/(1+x).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询