求图中圈出来的3道题目的定积分,详细过程,谢谢
展开全部
∫(1,e) (1+lnx)/x dx
=1/2 (1+lnx)²|(1,e)
=2-1/2=3/2
∫(1,3) 1/[x(1+x)] dx
=∫(1,3) [1/x-1/(1+x)]dx
=ln|x/(1+x)||(1,3)
=ln(3/4)-ln(1/2)
=ln(3/2)
∫(0,4) √x/(1+√x)dx
=∫(0,2) t/(1+t) d(t²)
=2∫(0,2) t²/(1+t)dt
=2∫(0,2) (t²-1+1)/(1+t)dt
=2∫(0,2) [t-1+1/(1+t)]dt
=(t²-2t+2ln|1+t|)|(0,2)
=4-4+2ln3
=2ln3
=1/2 (1+lnx)²|(1,e)
=2-1/2=3/2
∫(1,3) 1/[x(1+x)] dx
=∫(1,3) [1/x-1/(1+x)]dx
=ln|x/(1+x)||(1,3)
=ln(3/4)-ln(1/2)
=ln(3/2)
∫(0,4) √x/(1+√x)dx
=∫(0,2) t/(1+t) d(t²)
=2∫(0,2) t²/(1+t)dt
=2∫(0,2) (t²-1+1)/(1+t)dt
=2∫(0,2) [t-1+1/(1+t)]dt
=(t²-2t+2ln|1+t|)|(0,2)
=4-4+2ln3
=2ln3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询