若x1,x2,x3.xn属于正实数,求证:x1^x1*x2^x2.*xn^xn>=(x1*x2...*xn)^((x1+x2...+xn)/n)

 我来答
新科技17
2022-05-19 · TA获得超过5902个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.8万
展开全部
证明:利用均值不等式a+b≥2√ab,可得x1^2/(1+x1)+(1+x1)/(n+1)^2≥2√[(1+x1)/(n+1)^2*(x1^2/(1+x1)]=2x1/(n+1)x2^2/(1+x2)+(1+x2)/(n+1)^2≥2√[1+x2)/(n+1)^2*(x2^2/(1+x2)]=2x2/(n+1)……………………xn^2/(1+xn...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式