只有一个分母怎么去分母?
2个回答
展开全部
如 X/5+10=1/10
方程两边同乘以5,得x+50=1/2
具体解法如下:
42x+25x=134
(42+25)x=134
67x=134
x=134÷67
x=2
对于关于
的一元一次方程
可以通过做出一次函数
来解决。一元一次方程
的根就是它所对应的一次函数
函数值为0时,自变量
的值。即一次函数图象与x轴交点的横坐标。
扩展资料:
解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。
以解方程
为例:
去分母,得:
去括号,得:
移项,得:
合并同类项,得:(常简写为“合并,得:”)
系数化为1,得:
在一元一次方程中,去分母一步通常乘以各分母的最小公倍数,如果分母为分数,则可化为该一项的其他部分乘以分母上分数的倒数的形式。
参考资料来源:搜狗百科——一元一次方程
求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。
求值域常用方法:
1、图像法:
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围 [2] 。
6、判别式法:
判别式法即利用二次函数的判别式求值域。
7、复合函数法:
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
扩展资料:
值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
参考资料:百度百科-值域
方程两边同乘以5,得x+50=1/2
具体解法如下:
42x+25x=134
(42+25)x=134
67x=134
x=134÷67
x=2
对于关于
的一元一次方程
可以通过做出一次函数
来解决。一元一次方程
的根就是它所对应的一次函数
函数值为0时,自变量
的值。即一次函数图象与x轴交点的横坐标。
扩展资料:
解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。
以解方程
为例:
去分母,得:
去括号,得:
移项,得:
合并同类项,得:(常简写为“合并,得:”)
系数化为1,得:
在一元一次方程中,去分母一步通常乘以各分母的最小公倍数,如果分母为分数,则可化为该一项的其他部分乘以分母上分数的倒数的形式。
参考资料来源:搜狗百科——一元一次方程
求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。
求值域常用方法:
1、图像法:
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围 [2] 。
6、判别式法:
判别式法即利用二次函数的判别式求值域。
7、复合函数法:
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
扩展资料:
值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
参考资料:百度百科-值域
展开全部
去分母的前提是保证原方程的解不变的基础上再去分母,为此,需要根据等式的性质2,在等式的两边都乘以各分母的最小公倍数,然后将各分数的分母同所乘的最小公倍数约分,写成含有括号的形式。
例如:(5x+4)/3+(x+3)/4=2-(5x-5)/12去分母时,分母3,4,12的最小公倍数是12,将方程的各项(包括不含分母的项)两边都乘以12,得4(5x+4)+3(3+x)=24-(5x-5)。
这里(5x-5)/12因为最小公倍数是就是12,所以这里直接去掉分母就行,即(5x-5)。
扩展资料
一元一次方程的解法
解一元一次方程可分五个步骤:去分母、去括号、移项、合并同类项、系数化为1。
例如:解方程3y/2-(y+2)/6-(y-2)/3=1。
解析:
1、去分母,在方程两边都乘以6,得9y-(y+2)-2(y-2)=6。
口诀是“去分母要都乘到,多项式分子要带括号”。
2、去括号,得9y-y-2-2y+4=6。
口诀是“去括号也要都乘到,千万小心是符号”,要注意以下两个问题。
(1)根据乘法分配律,去括号时括号中的各项都要与括号前面的系数相乘,不可漏乘。
(2)在使用乘法分配律去括号时,要特别注意括号前的系数的符号,当系数是负数时,要注意变号。
3、移项,得9y-y-2y=6+2-4。
口诀是“移项变号别漏项,已知未知隔等号”,要注意以下三个问题。
(1)把方程中的某一项移到等号的另一边时要注意变号。
(2)在移项的过程中不要漏写某一项,去括号后方程两边共有六项,移项后还应是六项。
(3)一般情况下,以等号为界,把含有未知数的项都移到等号的左边,把不含未知数的项都移到等号的右边。
4、合并同类项,得6y=4。
口诀是“合并同类项加系数”,还有一个口诀:同类项,同类项,除了系数都一样;合并之时加系数,其余部分照写上。
5、系数化为1,得y=2/3。
口诀是“系数化1要记牢”,当未知数的系数不为1时,在方程两边都除以未知数的系数。
例如:(5x+4)/3+(x+3)/4=2-(5x-5)/12去分母时,分母3,4,12的最小公倍数是12,将方程的各项(包括不含分母的项)两边都乘以12,得4(5x+4)+3(3+x)=24-(5x-5)。
这里(5x-5)/12因为最小公倍数是就是12,所以这里直接去掉分母就行,即(5x-5)。
扩展资料
一元一次方程的解法
解一元一次方程可分五个步骤:去分母、去括号、移项、合并同类项、系数化为1。
例如:解方程3y/2-(y+2)/6-(y-2)/3=1。
解析:
1、去分母,在方程两边都乘以6,得9y-(y+2)-2(y-2)=6。
口诀是“去分母要都乘到,多项式分子要带括号”。
2、去括号,得9y-y-2-2y+4=6。
口诀是“去括号也要都乘到,千万小心是符号”,要注意以下两个问题。
(1)根据乘法分配律,去括号时括号中的各项都要与括号前面的系数相乘,不可漏乘。
(2)在使用乘法分配律去括号时,要特别注意括号前的系数的符号,当系数是负数时,要注意变号。
3、移项,得9y-y-2y=6+2-4。
口诀是“移项变号别漏项,已知未知隔等号”,要注意以下三个问题。
(1)把方程中的某一项移到等号的另一边时要注意变号。
(2)在移项的过程中不要漏写某一项,去括号后方程两边共有六项,移项后还应是六项。
(3)一般情况下,以等号为界,把含有未知数的项都移到等号的左边,把不含未知数的项都移到等号的右边。
4、合并同类项,得6y=4。
口诀是“合并同类项加系数”,还有一个口诀:同类项,同类项,除了系数都一样;合并之时加系数,其余部分照写上。
5、系数化为1,得y=2/3。
口诀是“系数化1要记牢”,当未知数的系数不为1时,在方程两边都除以未知数的系数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询