线代基本概念-----矩阵

 我来答
一袭可爱风1718
2022-07-22 · TA获得超过1.3万个赞
知道大有可为答主
回答量:7480
采纳率:99%
帮助的人:48.3万
展开全部
                                                     矩阵基本概念1

矩阵 :有m*n个数排成m行n列的数表成为m行n列矩阵,简称m x n矩阵,记为 A 。矩阵的m*n元素称            为 元

负矩阵: -A称为矩阵A的负矩阵

方阵 :当矩阵的行数与列数相等的时候,称之为方阵

行矩阵 :只有一行的矩阵称为行矩阵,又称为行向量; A =(a1 a2 ...an)  或 A =(a1,a2...,an)

列矩阵 :只有一列的矩阵称为列矩阵,又称为列向量;略

同型矩阵 :两个矩阵行数列数均相等,称他们为同型矩阵;

相等:  若两个矩阵是同型矩阵,且它们的对应元素相等,成这两个矩阵相等。

零矩阵: 元素都是零的矩阵。注意:不同型的零矩阵是不同的。

                             矩阵基本概念2       

系数矩阵: 线性方程组(又称 线性变换,<线性代数>P31 )的系数构成的矩阵称为系数矩阵。

                 线性变换和矩阵之间存在着一一对应的关系;常利用线性变换解释矩阵的涵义。

对阵矩阵: 是元素以主对角线为对称轴对应相等的矩阵

                    对阵矩阵 定义为:A=AT(A的 转置 ),对称矩阵的元素A(i,j)=A(j,i).

反对称矩阵: 反对称矩阵定义是:A= - AT(A的转置前加负号) 它的第Ⅰ行和第Ⅰ列各数绝对值                        相等,符号相反,于是,对于对角线元素,A(i,i)=-A(i,i),有2A(i,i)=0

逆矩阵: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。                则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

正交矩阵:

余子式定义 :A关于第i 行第j 列的 余子式 (记作Mij)是去掉A的第i行第j列之后得到的(m -1)×(n - 1)                      矩阵的行列式。特殊规定:一阶矩阵的伴随矩阵为一阶单位方阵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式