常用的三角函数

 我来答
cvttlwh
2020-12-16 · TA获得超过1.2万个赞
知道大有可为答主
回答量:5156
采纳率:77%
帮助的人:882万
展开全部

常用的三角函数有:正弦、余弦、正切、余切

它们的定义是:在一个直角三角形中,对边比斜边叫正弦;邻边比斜边叫余弦、对边比邻边叫正切、邻边比对边叫余切。

另外,还有正割、余割,它们分别是余弦、正弦的倒数。

对于任意角三角函数的定义,只是在锐角三角函数的基础上推进一步而已。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
泣靖巧X8
2020-12-16 · 超过43用户采纳过TA的回答
知道小有建树答主
回答量:366
采纳率:100%
帮助的人:23.3万
展开全部
sin=对边/斜边 cos=临边/斜边
tan=对边/临边 cot=临边/对边
具体数值如下:
30度 45度 60度
sin 1/2 根号2/2 根号3/2
cos 根号3/2 根号2/2 1/2
tan 1/根号3 1 根号3
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
刘老师法律在线
高能答主

2020-12-19 · 为各位题主提供贴心的法律援助
刘老师法律在线
采纳数:7701 获赞数:90240

向TA提问 私信TA
展开全部
一、常用的三角函数公式有:
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
二、常用的三角函数数值有:
角度0° 30° 45° 60° 90°
sin 0 1/2 √2/2 √3/2 1
cos 1 √3/2 √2/2 1/2 0
tan 0 √3/3 1 √3 不存在
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式