常用的三角函数
3个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
sin=对边/斜边 cos=临边/斜边
tan=对边/临边 cot=临边/对边
具体数值如下:
30度 45度 60度
sin 1/2 根号2/2 根号3/2
cos 根号3/2 根号2/2 1/2
tan 1/根号3 1 根号3
tan=对边/临边 cot=临边/对边
具体数值如下:
30度 45度 60度
sin 1/2 根号2/2 根号3/2
cos 根号3/2 根号2/2 1/2
tan 1/根号3 1 根号3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、常用的三角函数公式有:
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
二、常用的三角函数数值有:
角度0° 30° 45° 60° 90°
sin 0 1/2 √2/2 √3/2 1
cos 1 √3/2 √2/2 1/2 0
tan 0 √3/3 1 √3 不存在
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
二、常用的三角函数数值有:
角度0° 30° 45° 60° 90°
sin 0 1/2 √2/2 √3/2 1
cos 1 √3/2 √2/2 1/2 0
tan 0 √3/3 1 √3 不存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询