为什么导函数大于0函数单调递增?
1个回答
展开全部
可以简单理解为某一点的斜率,斜率大于0,说明函数值递增。
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。
若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
单调性:
一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间y'>0,那么函数y=f(x)在这个区间上为增函数:如果在这个区间y'<0,那么函数y=f(x)在这个区间上为减函数,如果在这个区间y'=0,那么函数y=f(x)在这个区间上为常数函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询