三角函数诱导公式推导
三角函数诱导公式:所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。下面就和我一起了解一下吧,供大家参考。
三角函数诱导公式有什么
公式一:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式四:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
三角函数诱导公式推导过程
万能公式推导
sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],
(因为cos2(α)+sin2(α)=1)
再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式推导
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]
上下同除以cos3(α),得:
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)=3sinα-4sin3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=[2cos2(α)-1]cosα-2cosαsin2(α)=2cos3(α)-cosα+[2cosα-2cos3(α)]=4cos3(α)-3cosα
即:
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
和差化积公式推导
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2
同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2
这样,我们就得到了积化和差的公式:cosasinb=[sin(a+b)-sin(a-b)]/2;sinasinb=-[cos(a+b)-cos(a-b)]/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式;
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]
cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]